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In this paper, we study the existence (uniqueness) and asymptotic stabil-
ity of the p-th mean S-asymptotically w-periodic solutions for some non-
autonomous Stochastic Evolution Equations driven by a Q-Brownian
motion. This is done using the Banach fixed point Theorem and a Gron-
wall inequality.

1 Introduction

Let (QQ,F,IP) be a complete probability space and
(L |I]) a real separable Hilbert space. We are con-
cerned in this paper with the existence and asymp-
totic stability of p-th mean S-asymptotically w-
periodic solution of the following stochastic evolution
equation

dX(t)= A(t)X(t)dt + f(t, X(t))dt
+g(t, X(t)dW(t),  t=>0
X(O) = Co,

(1)

where (A(t));> is a family of densely defined closed
linears operators which generates an exponentially
stable w-periodic two-parameter evolutionary fam-
ily. The functions f : R, x LP(QQ,IH) — ILP(Q),H),
g: R, xILP(QQ,H) — ILP(Q,Lg) are continuous satis-
fying some additional conditions and (W(t));>q is a O-
Brownian motion. The spaces IL?(Q,H), Lg and the
O-Brownian motion are defined in the next section.
The concept of periodicity is important in proba-
bility especially for investigations on stochastic pro-
cesses. The interest in such a notion lies in its signif-
icance and applications arising in engineering, statis-
tics, etc. In recent years, there has been an increasing
interest in periodic solutions (pseudo-almost periodic,
almost periodic, almost automorphic, asymptotically

almost periodic, etc) for stochastic evolution equa-
tions. For instance among others, let us mentioned the
existence, uniqueness and asymptotic stability results
of almost periodic solutions, almost automorphic so-
lutions, pseudo almost periodic solutions studied by
many authors, see, e.g. ([1]-[I1]]). The concept of S-
asymptotically w-periodic stochastic processes, which
is the central question to be treated in this paper, was
first introduced in the literature by Henriquez, Pierri
et al in ([12],[13]). This notion has been developed by
many authors.

In the literature, there has been a significant atten-
tion devoted this concept in the deterministic case;
we refer the reader to ([14]-[20]) and the references
therein. However, in the random case, there are
few works related to the notion of S-asymptotically
w-periodicity with regard to the existence, unique-
ness and asymptotic stability for stochastic pro-
cesses. To our knowledge, the first work dedicated
to S-asymptotically w-periodicity for stochastic pro-
cesses is due to S. Zhao and M. Song ([21}, [22]])) where
they show existence of square-mean S-asymptotically
w-periodic solutions for a class of stochastic frac-
tional functional differential equations and for a cer-
tain class of stochastic fractional evolution equation
driven by Levy noise. But until now and to the best
our knowledge,there is no investigations for the exis-
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tence (uniqueness), asymptotic stability of p-th mean
S-asymptotically w-periodic solutions when p > 2.

This paper is organized as follows. Section 2 deals
with some preliminaries intended to clarify the pre-
sentation of concepts and norms used latter. We
also give a composition result, see Theorem In
section 3 we present theoretical results on the exis-
tence and uniqueness of S-asymptotically w-periodic
solution of equation (I), see Theorem We also
present results on asymptotic stability of the unique
S-asymptotically w-periodic solution of equation(T),
see Theorem 3l

2 Preliminaries

This section is concerned with some notations, defini-
tions, lemmas and preliminary facts which are used in
what follows.

2.1 p-thmean S asymptotically omega pe-
riodic process

Assume that the probability space (Q,F,IP) is
equipped with some filtration (%);5( satisfying the
usual conditions. Let p > 2. Denote by ILP(Q),H) the
collection of all strongly measurable p-th integrable
H-valued random variables such that

ElIX] = fQ X ()P AP(w) < co.

Definition 1 A stochastic process X : R, — ILP(Q,H) is
said to be continuous whenever

lim EIX (1) - X ()P = 0.
—S

Definition 2 A stochastic process X : R, — ILP(Q),H) is
said to be bounded if there exists a constant C > 0 such
that

E[X(#F <C Vt>0

Definition 3 A continous and bounded stochastic pro-
cess X : R, — ILP(QQ,H) is said to be p-mean S-
asymptotically w periodic if there exists w > 0 such that

Tim EIX(t+@)-X(BIP =0, V20,
—+00

The collection of p-mean S-asymptotically w-
periodic stochastic process with values in H is then

denoted by SAP,(ILP(Q, H)).

A continuous bounded stochastic process X, which
is 2-mean S-asymptotically w-periodic is also called
square-mean S-asymptotically w-periodic.

Remark 1 Since any p-mean S-asymptotically w-
periodic process X is ILP(Q,IH) bounded and continuous,
the space SAPa)(I[JP(Q,H—I)) is a Banach space equipped
with the sup norm :

1/p
Xl = sup (EIX (1P

t>0
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Definition 4 A function F : R, xILP(Q), H) — LP(Q), H)
which is jointly continuous, is said to be p-mean S-
asymptotically w periodic in t € R, uniformly in X € K
where K C ILP(Q),K) is bounded if for any € > 0 there
exists Lo > 0 such that

ElIF(t+w,X) - F(t, X)IP] < e
forall t > L. and all process X : R, — K

Definition 5 A function F : R, xILP(Q,H) — LLP(Q, H)
which is jointly continuous, is said to be p-mean asymp-
totically uniformly continuous on bounded sets K’ C
ILP(Q), H), if for all € > O there exists 6. > 0 such that

E||F(t,X)-F(t,Y)|IP <e
forall t > 6. and every X,Y € K’ with E||X - Y||P < 6.

Theorem 1 Let F: R, xILP(Q),H) — ILP(Q),H) be a p-
mean S-asymptotically w periodic in t € R, uniformly
in X € K where K C ILP(Q,H) is bounded and p-mean
asymptotically uniformly continuous on bounded sets.
Assume that X : R, — ILP(Q,H) is a p-mean S asymp-
totically w-periodic process. Then the stochastic process
(F(t,X()))>0 is p-mean S-asymptotically w periodic.

Proof 1 Since X : R, — LLP(Q,H) is a p-mean S-
asymptotically w-periodic process, for all € > 0, there ex-
ists T, > 0 such that for all t > T,:

EBlX(t+w)-X(@)|F <€ (2)

In addition X is bounded that is

sup E|[|X(#)[}P < oo
£20
Let K C ILP(Q),H) be a bounded set such that X(t) € K for
all t > 0.
We have :
E||F(t+ w, X(t + w)) — F(t, X(£)||P

< 2P VE|F(t+ w, X(t + w)) = F(t + w, X (1))
+ 2P VE|F(t + w, X (1)) — F(t, X(1))|IP
Taking into account and using the fact that F is p-

mean asymptotically uniformly continuous on bounded
sets, there exists 0, = € and L, = T, such that forall t > T,

€

E|F(t+w,X(t+w))—F(t+w, X)) < > (3)

Similarly, using the p-mean S-asymptotically w periodic-

ity in t > 0 uniformly on bounded sets of F it follows that
forallt > T, :

E|F(f + w, X(£) = F(t, X(D)|F < zip (4)

Bringing together the inequalities (3) and (4), we thus
obtain that forall t > T, > 0

E|F(t+w,X(t+w)) - F(t, X())|P <€
so that the stochastic process t — F(t,X(t)) is p-mean S-

asymptotically w- periodic.
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Lemma 1 Assume that F : R, x LP(Q,H) — ILP(QQ,H)
is p-mean uniformly S-asymptotically w-periodic in t €
R, uniformly on bounded sets and satisfies the Lipschitz
condition, that is, there exists constant L(F) > 0 such that

E||F(t,X) - E(t, Y)|P < L(E)E|X - Y|P VYt>0,

VX, Y e ILP(Q,K). Let X be an p-mean S asymptotically
w-periodic proces, then the process (F(t,X(t)))i>0 is p-
mean S-asymptotically w-periodic.

For the proof, the reader can refer to [22]] whenever
p = 2. The case p > 2 is similar.

Now let us recall the notion of evolutionary family
of operators.

Definition 6 A two-parameter family of bounded linear
operators {U(t,s) : t > s with t,s > 0} from LP(Q),H))
into itself associate with A(t) is called an evolutionary
family of operators whenever the following conditions
hold:

(a)

U(t,s)U(s,r)=U(t,r) for everyr<s<t;

(b)

U(t,t) = I, where I is the identity operator;

(c) For all X e LLP(Q,H)), the function (t,s) —
U(t,s)X is continuous for s <t ;

(d) The function t — U(t,s) is differentiable and

%(U(t,s)) =A(t)U(t,s)

for every r<s<t;

For additional details on evolution families, we refer
the reader to the book by Lunardi [23].

2.2 OQ-Brownian motion and Stochastic

integrals

Let (B,,(t)),>1, t > 0 be a sequence of real valued stan-
dard Brownian motion mutulally independent on the
filtered space (Q, F,P, A ). Set

W(t) = Z VA,B,(t)e,, >0,

n>1

where A, > 0, n > 1, are non negative real num-
bers and (e,),;>1 the complete orthonormal basis in the
Hilbert space (IH,||.]|). Let Q be a symmetric nonnega-
tive operator with finite trace defined by

Qe, = A,e, such that Tr(Q) = Z/\,, < oo

n>1

It is well known that IE[W;] = 0 and for all t > s > 0,
the distribution of W(t)— W(s) is a Gaussian distribu-
tion (NV(0,(t — s)Q)). The above-mentioned H-valued
stochastic process (W(t));»q is called an Q-Brownian
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motion.

Let (K,||.||x) be a real separable Hilbert space.

Let also £(IK,H) be the space of all bounded linear
operators from K into H. If IK = H, we denote it by
L(H).

Set Hy = Q/2H. The space Hy is a Hilbert space
equipped with the norm |[[ullgs, = 1Q"ul.
Define

LS = {® € L(Ho, H) : Tr[(®QD")] < oo}

the space of all Hilbert-Schmidt operators from H to
H equipped with the norm

1Pl = Tr[((DQQJ*)] - E|®Q"?)2

In the sequel, to prove Lemma [4 and Theorem
we need the following Lemma that is a particular case
of Lemma 2.2 in [24] (see also [25]]).

Assume T > 0.
Lemma?2 Let G [0,T] — L(LP(Q,H)) be an
Fi-adapted measurable stochastic process satisfying
JOT E||G(t)||>dt < oo almost surely. Then,

(i) the stochastic integral J(: G(s)dW(s) is a continu-
ous, square integrable martingale with values in
(IH, ||.||) such that

2 t
E < IEJ IG(s)||>ds
0

Jt G(s)dW(s)
0

(ii) There exists some constant Cp > 0 such that the fol-
lowing particular case of Burkholder-Davis-Gundy
inequality holds :

E sup
0<t<T

p T p/2
< cplEUO ||G(s)||2ds)

In the sequel, we’ll frequently make use of the fol-
lowing inequalities :

jt G(s)dW(s)
0

|a+blP < 2P~ (|alP+[bIP)

t t
1

f e~2alt=s) g5 < J e ds < = VYt> ty, wherea > 0.
a

to to

3 Main results

In this section, we investigate the existence and
the asymptotically stability of the p-th mean S-
asymptotically w-periodic solution to the already de-
fined stochastic differential equation :

AX(t) = A()X(1)dt + f (£, X ()t + g(t, X(£)dW (1),
X(O) = Co»
(5)
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where A(t),t > 0 is a family of densely defined closed (H.2) The function f : R, x LP(Q,H) — ILP(Q,H)

linear operators and is p-mean S-asymptotically w periodic in t € R, uni-
formly in X € K where K C ILP(Q),H) is a bounded set.
f Ry xILP(Q,H) — LP(Q, H), Moreover the function f satisfies the Lipschitz condi-
tion, that is, there exists constant L(f) > 0 such that
g: R, xILP(Q,H) - ILP(Q, L) Ellf (£, X) - f(£, V)P <L(OEIX - Y|P ¥t20
are jointly continuous satisfying some additional con- yx y ¢ LP(Q, H).
ditions and (W(t));>o is a Q-Brownian motion with (H.3) The function g : R, x ILp(Q’Lg) N ILp(Q}Lg)

Vah_lre; in IHhand ﬁ_adaptidl'—l' ) et is p-mean S-asymptotically @ periodic in t € R, uni-

roughout the rest of this section, we require the : p 0y ;

following assumption on U(t,s) : formly in X € K wh.ere K<c IL (.Q’ La) 1sa bou.nded set.
g p 9] Moreover the function g satisfies the Lipschitz condi-

. _ . tion, that is, there exists constant L(g) > 0 such that
(H1): A(t) generates an exponentially w-periodic

stable evolutionnary process (U(t,s));»s in LP(Q),H), IE||g(t, X) —g(t,Y)ll’Zo <L(QE|X-Y|P Vt>0,
that is, a two-parameter family of bounded linear op- :
erators with the following additional conditions : VX,Y e LP(QQ,H).

Lemma 3 We assume that hypothesis (H.1) and (H.2)
1. Ut + w,s + w) = U(t,s) for all t > s (w- aresatisfied. We define the nonlinear operator Ay by: for

periodicity). each ¢ € SAP,(ILP(Q),H))
2. There exists M > 0 and a > 0 such that ||U(¢,s)|| < t
Me =9 for t >s. (A)(t) = J; U(t,5)f (s, ¢(s))ds

Then the operator Ay maps SAP,,(ILP(Q),H)) into itself.
Now, note that if A(t) generates an evolutionary ) )
family (U(t,5));ss on LP(Q,H)) then the function g P’roof2 We deﬁn'e h(s)‘: f(s,¢(s)). Since the hypothe-
defined by g(s) = U(t,s)X(s) where X is a solution of 5% (H.Z) zs.satzsﬁed, using Lemma we ded.uce. that the
equation (), satisfies the following relation function h is p-mean S asymptotzcally w-periodic.

Define F(t Io s)ds. It is easy to check that F is
dg(s) =—-A(s)U(t,s)X(s)+ U(t,s)dX(s) bounded and contznuous Now we have :
= —A(s)U(t,5)X(s) + A(s)U (t,5) X (s)ds F(t+w) - F(t)
+ U(t,s)f (s, X(s))ds+ U(t,s)g(s, X(s))d W (s). ® t
= J U(t+ w,s)h(s)ds + J- U(t,s)(h(s + w) = h(s))ds
Thus 0 0

dg(s) = U(t,s)f (s, X(s))ds + U(t,5)g(s, X (s))dW(s). (6) = U(”‘”"”)L Ulw, s)h(s)ds

t
Integrating (6) on [0, t] we obtain that +f U(t,s)(h(s +w) - h(s))ds
0
t
X(0)-Ult,0c0 = [ U9 (s, X(s)ds EIE(t+ o)~ F(O)P
0
t
@ p
+ J:) U(t;s)g(SxX(S))dW(S)- < 2p—1M2pe—uptIE(J e—u(a)—s)”h(s)Hds)
0
Therefore, we define . t p
0P M”lE( j 95 + ) = h(s)| ds)
Definition 7 An  (F;)-adapted  stochastic  process 0

(X(#)e>0 is called a mild solution of if it satisfies Let p and q be conjugate exponents. Using Holder in-

the following stochastic integral equation : equality, we obtain that E||F(t + w) — F(t)||P
t
X(t)=U(t,0)cq +L Ul(t,s)f (s, X(s))ds < 2p*1M2pefapt( Jw efaq(w*S)ds)p/q me||h(5)||Pd5
t 0 0
t p
" Jo Uit s)gls X(sAW(s) + 2”‘1M1’IE(f0 e ) ||h(s + w) — h(s)|| ds)
3.1 The existence of p-th mean S- ~ I +7()
asymptotically w-periodic solution where

We require the following additional assumptions:

I(t):2p_1M2pe_“pt(J- e‘“q(‘”—s)ds) f E|[h(s)||P ds
0 0
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T(t) = 2P—1MP1E( J-t 9 [(s + ) = h(s)| ds)p
0

_a(4_ P
— P~ 1MP]E(J =) el S)llh(5+w)—h(5)“d5)
0
It is obvious that

lim I(t) = 0.

t—+o0

Using Holder inequality, we obtain that J(t)

t /
< ZP_IM”(J. e_“(t_s)ds)p !
0

. (7)
J e IE||h(s + w) — h(s)||P ds
0

t
<2 (L) [ I o) - oP s (8)
0

(9)

Let € > 0. Since lim E||h(u + w)—h(u)|P =0
u—>+oco
IT. >0, u > T, = Ellh(u+w)—h(u)lP < —%—. (10)
e>0,u>T, U+w T ETYTA
We have
J(t)
1 p/q L a(t-s)
<27 M ) j E|h(s + w) — h(s)|]P ds
0
t
+ 2P P ( )”/qf e E| (s + w) — h(s)||P ds
T,
=J1(t)+2(b),
where
-1 1\p/q e —a(t-s)
Ji(t) = 2P MP(E) e ME||h(s + ) — h(s)||P ds
0

t
Jo(t) = 2P’1Mp(%)p/q J e YSE||h(s + w) — h(s)||P ds
T,

Estimation of J1(t)
Ja(t)
T,
(2 [
a 0

1.\p/ Te
2”*1Mp(—)p 1op suplEIIh(t)IIpe“tJ e ds.
a >0 0

IA

~E=S)E k(s + w) — h(s)||P ds

IA

It is clear that tlim Ji(t)=0
—+00
Estimation of J,(t)

Unsing the Inequality in we have

Jo(t)
t
2P—1Mp(l )p/q f P!
a T,

o))

E||h(s + w) — h(s)||P ds

eaP
2p-1pMp

IN

— op-lpqpgp

i 1MP

IA

€.
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Lemma 4 We assume that hypothesis (H.1) and (H.3)
are satisfied. We define the nonlinear operator A, by: for
each ¢ € SAP,(ILP(Q, LY))

t
(na)(6)= | Ute gt plonaws
0
Then the operator A, maps SAPw(ILp(Q,Lg)) into itself.

Proof 3 We define h(s) = g(s, ¢(s)). Since the hypothesis
(H.3) is satisfied, using Lemma (1} we deduce that the
function h is p- mean S asymptotically w periodic.
Define F(t) = jot U(t,s)h(s)dW (s)ds. It is easy to check
that F is bounded and continuous. We have :

F(t+w)—E(t)

= ! U(t+ w,s)h(s)dW(s) + f
0 0

= U(t+w,w)J;)

tU(t s)(h(s+ @) = h(s) )W (s)

w

U(w,s)h(s)dW(s)+

= U(t+w,w)F(w) + J U(t,s)( (s + @) = h(s))ds

0

E||F(t+ w) - F($)]IP

p
< 2P—1Mpe-“P’1E'

fw U(w,s)h(s)dW (s)

h(s))dW(s)

p

+2P 'R ( 5+ w)

= 1(t) +](t)

where

p
I(t) = 2p’1M”e”’“tlE‘

jw U(w,s)h(s)dW(s)
0

P

J(t)=2P'E J-t U(t,s)((s + @) — h(s))d W s)
0

It is clear that

lim EI(t) = 0.

t—+o00

Let € > 0. Since tlim E|lA(t + w) = h(t)|IP =0
—+0o
(2a)p/2
AT, >0,t> T, = ElJh(s + ) - h(s )|| m
(11)
128
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where the constant C, will be precised in the next lines.
We have

EJ(t)
t p
=2 'E f U (t,5)((s + @) = h(s))d W (s)
0
T. p
<4P'E f U(t,s)(h(s+a))—h(s))dW(s)
0
t p
+4P 1B j U(t,s)((s + @) = h(s))d W (s)
T.
= EJ;(t) + EJa(t),
where
T. p
Ji(t) = 4P71 J U(t,s)( (s + @) - h(s))d W (s)
0
t P
J,(t) = 471 f U(t,s)(h(s + @) h(s))d W s)
T.

Note that for all t > 0,
h(t+w) - h(t) € LP(Q, L) CLX(Q, 1Y)

and

flEuU(t,s)(h(Hw)—h<s>>||2ds
0

2
ods

t
< sz 2B (s + )~ h(s)|1
0 2

t
< 4M?sup 1E||h(t)||§g f e 20t=s) g
0

t>0

< 4M?*a"?sup E[Ih(t)I17,
t>0 2

< 0o.

Estimation of IEJ ().

Assume that p = 2. By Lemma 2} part (i) we get :
EJy (1)

T. 2
<4M?E [J e_”(t_5)||h(s+w)—h(s)||LgdB(s)]
0

Te
< 4AMZE [J. e—2a(t—5)||h(5+w)—h(s)||iod5}
0 2

T.
<16M?%e 2" sup IEIIh(s)lIioj e**ds
2Jo

520

T
< 16M%e™** sup E||h(s)|?, J e**ds
>0 2.Jo
Thus
lim EJ; (t) = 0.

t—+oo

Estimation of IE],(t).

Assume that p > 2. Using again Lemma (2} part (ii),
Holder inequality between conjugate exponents p%Z and

E and the inequality in we have
EJ>(t)

t p
=4 'E f U(t,s)( (s + @) — h(s))d W (s)

Te

t p/2
s4p‘1M”Cp]EU e—2a(t—S)||h(5+w)—h(s)||iod5]
2

€

b a(t—s)222 2a(t-s)2 r2
= 4P1MPCPIEU T e ‘”p||h<s+w>—h(s>||§ods}
T, 2
t L2t
< cp4P1MP(J e*2a<f*5>ds) f e IBh(s + w) — h(s)IIY s
T, T, 2

€

[Nlast

p=1agqp p/2 t

< CpdP™ MPe(2a) (J e—Za(t—s)ds)
Cp4r~IMP T.

<e.

We conclude that
lim EJ,(¢t) = 0.

t—+oo

Assume that p = 2. By Lemmal2} part (i) and Cauchy-

Assume that p > 2. Using Holder inequality between Schwarz inequality we have
conjugate exponents l% and % together with Lemma IEJ,(t)

part (ii), there exists constant Cp such that :
EJ;(t)

T, p/2
< C,4""'MPE U e 2 k(s + w) - h(S)IliodS]
0 2

Te _ 2ap(t-s) #
scp4p—1MP(f e ds)
0

T,
f E|lh(s + w) = h(s)|IF yds
0 L2

T, P2
1 € 2aps \"7
< Cp4P” Mpe“‘”(j ep2 ds)

T. 2" sup E[lh(s)II7,
0 2

s>0
Therefore
lim EJ,(t) = 0.

t—+00
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2

=4E f U (t,5)(h(s + @) - h(s))d W (s)

Te

t
< 4M2]E [J e_za(t_5)||h(s+w)_h(S)HiOdS:l
T. 2

t
= 4M? U e =5) 5 e 9| |h(s + w) — h(s)lliods}
T. 2

t 1/2
< 4M2(J e—2a(t—s)ds)
Te

S ) 172
(L eI Bl + ) - ho)IE) ds)

€

Note also that for t > T, :
€a

E|lh(s + w) — h(s)u;g <o
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so that
B < Ml (1 iy <2P1lﬁ(f||U<t,s>||||f<s,c1><s)>—f(s»If(s»uds)p
Jo(t) < Ve (Lge s) = .
t P
<e. + zplm(fo 1U(t,s)lllg(s, D (s)) —g(s,‘P(s))IIdW(s))

This implies that t p
< 2P1MPIE(f &9 |1£(5,0(s)) - f(s,‘lf(s))llds)
0

lim EJ,(t) = 0

t—+oo t p
+2P1MPIE(J e~ 9 |1 g(s, D (s)) — ¢(s, W (s))||dW (s )
Finally, we conclude that 0 lgte, Dls) = (s, Fls)llaWs)
lim E||E(t+w)— F(H)|P = 0 Cqse p > 2 : By Lemma |2} part (ii) and Holder in-
t—+o0 equality we have
E|T®(¢) - TW ()P
Theorem 2 We assume that hypothesis (H.1), (H.2) and

i t t

(H.3) are satisfied and < 2p1MpL(f)(J e“(ts)ds)p_lj B[ (s) — W(s)|Pds
0 0

(i)

t p/2
, 2P CE( [ e gts,006) - gt5, WOy ds)
© =2 I MP(L(f)aP+CyL(g)a? ) <1  if p>2 0 2

(12) S2p1M"L(f)SUP]EIICD(S)—\I’(s)llp(Jte“(”)ds)p
0

5>0
(i) t p/2
o 2 MG [ e gts, 0061 - (s, WO s)
2=2M*(L(f)=+L(g)=)<1 if p=2(1 0 ’
(BN <t i P22 03 oy (0w

b apt-s) a(t-s) p/2
Then the stochastic evolution equation (1)) has a unique ZP_IM”CP]E(J- e 72 e 7 |lg(s,P(s)) —g(s,‘P(S))IliodS)
p-mean S-asymptoticaly w-periodic solution. 0

<27 IMPaPL(f )@ - Wik

Proof 4 We define the nonlinear operator I by the ex- t p=2

pression + 2p_1MpCp(J e_“(t_s)ds)Tx
0
t
(TD)(t) = U(t,0)co+ J eS| |g (s, D(s)) _g(slqj(s))“igds
0
‘ ‘ <27 MP(L(f)a P +CyL(g)a 2 )@ — WPk,
f U(t,s)f(s,@(s))ds+j U(t,s)g(s, P(s))dW(s)
0 0 This implies that
Note that I — P[P, < 2" MP(L(f)a™ + C,L(g)a* Ib — Wi,
(TD)(t) = U(t,0)co + (A DP)(t) + (A D)(2) Consequently, if © < 1, then I is a contraction mapping.
One completes the proof by the Banach fixed-point prin-
According to the hypothesis (H1) we have : ciple.

E|U(t+w,0)-U(t,0)||P
Case p = 2 : using Cauchy-Schwarz inequality and
< 2p_1(1E||U(t +w,0|P +E|U(t, 0)||P) Lemma part (i), we obtain

2
< P=1pfP p=ap(t+@) 4 pqP p=apt E[F®(#) - T (2]

= 2p—1Mp€—apt(e—apw+1) t t
< zMz(j e-““-s)ds)naj e (5, D(s)) - f (5, W(s))IPds
0

Therefore 0

t
+2MZIEJ e72419) | o(s5,D(s)) — ¢(s, W (s))||?, ds
lim E[U(t + ,0)— U(t, 0P = 0 . llg(s, @ (s)) — g(s, W( ))||L(Z)

t—+o0o

t
2 B 2 —a(t-s) 7.\?
According to Lemma [3| and Lemma [4) the operators Ay <2M L(f)s;lzlglEH(D(s) P (J; € ds)

and A, maps the space of p-mean S-asymptotically w- t
periodic solutions into itself. Thus T maps the space of + 2M2L(g)sup]E||(D(s)—\Il(s)||2J. e~ 2at=9) g g
0

p-mean S-asymptotically w periodic solutions into itself. 520

We have 2 1 1 )
< 2M*(L(f)= + L(g)~ )sup E||d(s) - ¥

E[[TD(£) = T (£)]P < 2M2(L(f)— + (g)a)s;g 1D (s) - W (s)l
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This implies that

1 1
T - T, < 202(L(f) 5 + Lig) - )I0 - I

Consequently, if 2 < 1, then I is a contraction map-
ping. One completes the proof by the Banach fixed-point
principle.

3.2 Stability of p-mean S asymptotically
w periodic solution

In the previous section, for the non linear SDE, we ob-
tain that it has a unique p-mean S-asymptotically w-
periodic solution under some conditions. In this sec-
tion, we will show that the unique p mean S asymp-
totically w periodic solution is asymptotically stable
in the p mean sense.

Recall that

Definition 8 The unique p-mean S asymptotically w pe-
riodic solution X*(t) of (1) is said to be stable in p-mean
sense if for any € > 0, there exists 6 > 0 such that

E|IX(t) - X"(t)IIF <€, t>0,

whenever E||X(0) — X*(0)||P < 6, where X(t) stands for a
solution of (1) with initial value X(0).

Definition 9 The unique p-mean S asymptotically w pe-
riodic solution X*(t) is said to be asymptotically stable in
p-mean sense if it is stable in p-mean sense and

lim EJ[X () - X ()]I" = 0

The following Gronwall inequality is proved to be
useful in our asymptotical stability analysis.

Lemma 5 Let u(t) be a non negative continuous func-
tions for t > 0, and a, y be some positive constants. If

t
u(t) < ae P+ )/J. e P9y (s)ds, t>0,
0

then
u(t) < aexp{(-p+y)t}

Theorem 3 Suppose that hypothesis (H.1), (H.2) and
(H.3) are satisfied and assume that

1
v P IMP(L(f)a' P +L(g)Cpa 7 ) <a  (14)
whenever p > 2.
(i)
3M2(L(f)a + L(g)) <a (15)
whenever p = 2.

Then the p-mean S-asymptotically solution X; of (1)) is
asymptotically stable in the p-mean sense.

Remark 2 Note that the above conditions respec-

tively implies conditions respectively of
Theorem 2]

www.astesj.com

Proof 5 IE||X(t)— X*(t)||P

- 1E||U(t, 0)(X(0) = X*(0))

+ Lt U(t,5)(f(s,X(s) = f (s, X(5)))ds

t
- | vl xen-gs xenawe|

Assume that p > 2. Using Holder inequality we have

E[|IX(£) = X*(£)lIP

< 3P~ MP e~ PHE||X(0) — X*(0)|P

t
=3 ([ MUteaMif(s X -5 3 ol

t
=3[ IUte Mgt X6 -gts, X MW )

< 3P~ MPe PHE||X(0) — X*(0)||P

+ 3p_1M”IE( fot eI (s, X(s)) —f(S,X*(S))IIdS)p

t

+ 3p—1Mp1E(L e g(s, X(5)) - (s, X (AW (s

— 3P~ MPePHE||X (0) — X7 (O)||P + 3P~ MP x (

K fo 6 X ) - flo. X s

+ 37 IMPC, x

t 2a(p-2)(t-s) _ da(t-s) . ) p
([ ™7 Blgts X000 - s X 6 s
0

< 3P~ MPPHE||X (0) — X*(0)|P
t p_l
+3P1M”L(f)(j e’“(t’s)ds) x(
0
t
f e-a<f—5>1E||X(s)—x*(s)npds)
0

t P2
+ 3p—1M‘DCP(J‘ e—zﬂ(t—s)) 2 % (
0

t
| e gt X6 - gt5. X )

so that
E|IX () — X*(£)IIP

<3P~ lMpe‘“ptIEHX (0)— X* 0)|IP

+ 3P I MPL(f e SE|IX (s) — X*(s)|[Pds

+3P7IMPC,L(g)(

N

Using Lemma [5] we obtain :
E[[X(t) - X*(1)IIP

< 3P MP x E||X(0) — X*(0)]|Px

exp {( —a+ 3P’1MP(L(f)a1”’ +L(g)C, a7 ))t}

)

)”zjo AIE[|X () — X*(5)[Pds
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Straightforwardly, we obtain that X (t) converges to 0

exponentially fast if

—a+ 3P MP(L(f )(%)”*1 +LUgCya ) <0,

which is equivalent to our condition (14). Therefore X*

is asymptotically stable in the p-mean sense.

Assume that p = 2. We have
E||X (1) - X*(1)II?

< 3M%e " E||X(0) - X*(0)||?

t 2
< 3E( [ UM X 66X 0)ds)

t 2
<3E( [ 10l X6 g X @awE) 8

< 3MZe " E||1X(0) - X*(0)|?

+3M7E( jo e*““*s)IIf(s,X(s))—f(s,X*(s))IIds)z

t
< SME( [ e gls X(5) (s X )WL)
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